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Calculation of Hazard Distances for
Scanning, Repetitively Pulsed Laser Systems

EXECUTIVE SUMMARY

There is increasing interest within defence organisations in laser radar of one form or
another, for applications such as surveillance, target recognition and tracking, remote
sensing of atmospheric conditions and detection of chemical/biological species.

An important factor in the eventual mode of operation of such systems is the hazard
presented to the human eye. The conduct of trials, exercises and operations is
influenced by eye safety constraints. A methodology is required to evaluate these
hazards so that appropriate controls may be instituted, which are neither overly
restrictive nor insufficiently protective.

The nature of laser radar systems makes such calculations complex, and a
methodology is not defined in the relevant Australian Standard. An approach to this
problem is detailed in this report, and a computer model developed for carrying out
such calculations described in detail. As an example, the model is applied to an
experimental laser radar system currently being developed in DSTO.

The analysis and results of this report are expected to be of use to personnel involved
in the specification, development, procurement, evaluation and operation of a wide
variety of laser radar system types, as well as ADF personnel undertaking the duties of
Laser Safety
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1. Introduction

There is increasing interest within defence organisations in laser radar of one form or
another, for applications such as surveillance, target recognition and tracking, remote
sensing of atmospheric conditions and detection of chemical/biological species.

The majority of such systems necessitate the scanning of a repetitively pulsed laser
beam over a range of angles in order to build up an image of the region of interest. It
is necessary to evaluate the hazards that may be posed by the laser radiation in order
to minimise the risk of injury to personnel. Laser hazards are characterised by the
Nominal Ocular Hazard Distance (NOHD), which is the distance from the laser
source at which the radiation intensity falls below the prescribed limit as defined in
the Australian Laser Safety Standard [1]. This limit is termed the Maximum
Permissible Exposure (MPE).

The Standard does not define a complete methodology for calculation of the NOHD
for scanned systems, and attention in the scientific and health literature has to date
been limited to supermarket scanners and ophthalmic instruments. None of this work
can be extended readily to the case of interest, the outdoor use of scanning,
repetitively pulsed laser systems.

This paper sets out a methodology for NOHD determination, details a computer
model for performing the calculations for systems with a wide variety of parameters,
and demonstrates its application to an example system, an Imaging Laser Radar
(ILR) currently being developed in DSTO.

2. NOHD calculation

Calculation of the NOHD for a stationary single-pulse or cw laser beam is relatively
straightforward. The MPE depends primarily on the wavelength and pulsewidth of
the laser. The NOHD can then be calculated from the power/energy, the beam
divergence and the initial beam width. If the laser is repetitively pulsed, the most
restrictive of the limits applying to the cumulative energy density or the average
power density is applied. In addition, the MPE is a function of the overall exposure
time. For a scanned system, cumulative energy, average power density and overall
exposure time are all functions of the scan parameters: array size and shape, angular
resolution, and the “delay” - the time it takes the scan mirror to decelerate at the end
of one line, change direction and reach scanning speed for the next line. The size of the
aperture collecting the radiation also has significant influence.

Since the scan pattern and resolution affect the total scan time, this affects not only
the exposure, but the MPE with which it must be compared. Additionally, different
MPEs are quoted for eye and skin exposure.
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A model has been developed that calculates the irradiance as a function of distance for
given scan parameters. It then compares that with the relevant MPE values and
determines the NOHD.

3. Model

3.1 Exposure scenario

The exposure received depends on the scan pattern, the delay, the beam divergence,
the aperture size and the range. Only a bi-directional raster scan pattern is treated in

this model.

Figure 1 shows the exposure scenario envisaged. At close range, most or all of the
pulses can enter the viewing aperture as they are separated by a small angular
amount, while at longer ranges only a few pulses may enter. The important factors in
hazard calculations are the total energy, the number of pulses received and the total
exposure time. The model calculates these factors as a function of distance.

SHORT RANGE LONG RANGE

many pulses received few pulses received
Receive

- «— aperture

SCANNER SCANNER

Figure 1. Exposure scenario.
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The temporal behaviour of the radiation received by the viewing aperture is shown in
Figure 2. Bursts of pulses are received whose length and total duration depend mostly

on the relative size of the beam and aperture.

linear scan time

Exposure time
Short range

linear scan time
-

el I

I

-

-

Exposure time
Long range

-
'

Figure 2. Temporal structure of received radiation.

We say that a pulse is received (a hit) when the centre of the smaller of the beam and
the aperture falls within the larger. The beam width is taken to be the 1/e2 diameter.
This takes account of the differences between the case when the receiver is close to the
source and receives many pulses, and the case when the receiver is remote. A hit
delivers all the energy of the pulse to the receiver, ie. no aperturing is taken into

account.

The definition of the delay at the end of a line is shown in Figure 3. Pulses falling
between scan lines are counted as if they all landed at the end of the previous line. To
allow for the “worst case”, each burst of hits irradiating a receiver is assumed to
contain pulses emitted during the delay, ie the receiver aperture is assumed to

intersect one edge of the scan pattern.
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Figure 3. Behaviour of beam direction at the end of a scan line. The inset shows the

effect on the scan pattern.

3.2 Assumptions

The following assumptions are made in the model:

® o o o

Atmospheric attenuation is negligible;

Transmittance of optical aids is 100%;

The beam is stationary during the delay at the end of each scan;

Continuous repetitive scanning is not possible - the hazards for a single scan are
evaluated

Only one wavelength is emitted.

3.3 Exposure evaluation

A flowchart showing the main steps in calculating the hazard distances for given scan,
receiver, laser and beam paramters is shown in Annex A. A printout of the MathCAD
(Version 6+) worksheet used to carry out the modelling is attached at Annex C, and the
Excel file used for input and output of the data is shown in Annex B.

The input scan parameters are the scan size in horizontal and vertical angles (hscan
and vscan), the angular separation of adjacent points (h¢ and v¢), and the delay at the
end of a scan line (delay). The laser parameters are the power (P), the FWHM pulse
duration (t), the initial 1/e? beam radius (wo), the initial wavefront radius of curvature
(Ro), the pulse repetition frequency (prf), the M2 factor (Msq), and the wavelength (A).
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The MPEs are defined in terms of energy density (ED) or power density (PD),
depending on the exposure time (exptime). In order to calculate the correct MPE, it is
necessary to evaluate the number of hits.

3.3.1 Beam propagation

To calculate the number of hits and the irradiance at a given range, it is necessary to
find the beam size as a function of distance. This is calculated using the Gaussian
beam propagation formalism. This technique was adopted because the beam may be
converging when it is emitted from the transmitter, so a simple divergence figure will
not describe its behaviour at short ranges, where the hazard is greatest, and also
because if the profile is non-Gaussian or unknown, it is difficult to define a specific
beam diameter.

The propagation of Gaussian beams is defined by the wavelength, beam width,
wavefront radius of curvature and the M? factor, which is a measure of beam quality
in terms of how far the beam is from being diffraction-limited[2].

The beam size (1/e? radius) as a function of distance is given by

1t 1 -0.3
w(z) =] —___.Im

A-Msq 1 iA-Msq 1+z
Roo mo(wy)’
where Ry is the wavefront radius of curvature, wo is the beam size (1/e? radius), both
measured at the output of the transmitter.

The energy density of a single pulse as a function of distance propagated is then given
by

ED(z) = E / m.rv2(z)
where r4(z) is the 1/e radius of the beam, equivalent to w(z)/+2.

This is compared with the most restrictive MPE as a function of distance, to find the
NOHD.

3.3.2 Finding the MPE

Tables of values for MPEs are given in the Laser Safety Standard [1]. The main
factors are the wavelength and exposure time. For a pulsed system, the exposure time
may be either the laser pulse width or the total time between first and last exposure,
depending on the circumstances. The process for evaluating the correct MPE with
which to compare the energy density at a specific range is as follows:
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Determine the wavelength

Determine the pulse width

Determine the exposure time

Determine the number of pulses (hits)

Calculate the MPE under the three conditions described in the Standard (see below)
for multiple pulse exposure

Convert all into units of energy density

Select the lowest MPE

Modify the MPE to account for the presence of optical aids

Modify the MPE to account for the use of limiting apertures [1].

The three conditions are that;

a) the exposure for a single pulse within a pulse train shall not exceed the MPE for a
single pulse. Here the MPE selected from the table is that for an exposure time
equal to the pulse duration.

b) the total exposure for a pulse train of duration T shall not exceed the MPE for a
single pulse of duration T. Here the MPE selected is that for an exposure equal to
the time between first and last received pulse. It is then divided by the number of
hits for comparison with the single pulse energy density.

¢) The exposure for a single pulse within a pulse train shall not exceed the MPE for a
single pulse divided by the number of pulses received to the power _. Here the
MPE for case a) above is reduced by a factor NP/4, where NP is the number of
hits.

There is a caveat concerned with the case where the MPE in peak power terms falls
below the cw average power MPE, but since this is extremely unlikely to apply to
laser radar - type systems it is not considered further.

It is clear that the number of hits and the total exposure time must be evaluated as
function of distance in order to calculate the correct MPE for comparison with energy
density.

3.3.2.1 Wavelength range

The MPE table in the model allows selection of any wavelength between 1.4 pm and
1 mm. Calculation of MPEs for wavelengths less than 1.4 pm for scanning systems is
considerably complicated by the need to quantify the “angular subtense” of the
source, and is outside the scope of the current model, although it could be added at a
later date.

3.3.2.2 Number of hits

If the entire scan is within the receiver aperture, then all pulses are hits. In this case the
number of hits (NP) is given by

NP = nv.nh + (nv-1).extra
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where nv and nh are the number of points along the vertical and horizontal edges of
the scan, and extra is the number of pulses fired during the time taken to change
direction at the end of a line (assumed to affect only the horizontal direction). The
value of extra is given by

extra = delay.prf

If the scan is larger than the receiver aperture, the situation is more complex. It is
necessary to consider the worst case, ie. the maximum possible number of hits for a
given range, aperture and scan pattern. Because there are extra pulses at the side
edges of the scan, the receiver is assumed to be at one edge. The question then arises
as to what relative position of aperture and scan edge gives rise to the maximum
number of pulses being received. This depends on the delay at the scan edge and the
density of points in the rest of the scan. If the delay was equal to zero, the maximum
number of hits would occur when the array of points corresponding to the centres of
successive pulses covers the full aperture. If however the delay was large and the
density was low, then the maximum number would occur when the edge of the array
fell somewhere between the centre and the edge of the aperture. See Figure 4.

Two different approaches are given in the model, which can be selected setting the
variable “discrete” equal to 1 or 0 in the MathCAD worksheet. They are referred to as
the “discrete” method and the “integral” method.

The discrete method is more exact, but more computationally intense. At each
distance from the source, an array of points corresponding to the beam centres of
successive pulses is created. To reduce processing time the size of the array is limited
to slightly greater than the size of the aperture. A circle representing the aperture is
generated and centred on the centre of the array in the vertical direction. This circle is
then moved in increments horizontally across the array and the number of points
inside the circle is evaluated each time. If the beam is larger than the aperture, the
beam size is used to generate the circle rather than the aperture. This is equivalent to
scanning the aperture over the beam rather than the other way round, and is necessary
to meet the definition of a hit as given above.

A point at one end of every second row represents “extra” hits received during the
turnaround delay. If the scan pattern is small enough, points at each end of the array
contribute extra hits. The number of hits for this combination of scan parameters,
range and aperture size is then given by the greatest number of hits found in all the
iterations. Figure 4 shows this graphically.

Counting the hits in this way is considerably more accurate than approximating the
beam and the aperture as square-sided and attempting to compensate for the
difference by using the ratio of the area of a square and a circular receiver. It also
proved more accurate than the integral method, which is described below.
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In the integral method, the aperture is again assumed to intersect the edge of the scan
pattern. Two distinct areas within the aperture are defined [Figure 4], Area Al which
contains the extra points due to the delay, has width equal to the horizontal spacing of
the points and height equal to the vertical extent of the aperture at the position of the
scan edge. The number of points in this area can be approximated to be:

1 (often? | . m>
dv(z) ( 2

Similarly, the number of points in area A2 can be approximated from the area and the
density of points:

(r( z)
2- 1 \/r(z)2 - x2 dx
i offset | dh;g)
NP U U
A2(?) dh(z)- dv(z)

where the quantity “offset” is the distance between the aperture centre and the edge of
the array.

To calculate NP, these two expressions are evaluated and summed for a number of
values of offset, and the maximum found. This method is significantly faster than the
discrete method, but suffers a certain amount of inaccuracy. This is shown in Figure 5,
which compares NP calculated using each method for a range of offset values. Since
the maximum of each of these plots would be returned as NP, the difference between
the two methods for this set of parameters is small. However this may not hold in all
cases. The value of the integral method is that it provides reasonably accurate results
in a short time. The discrete method should be used for assessing the absolute value of
the NOHD.
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programmed scan pattern
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aperture
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beam centres
“extra” hits
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MODEL one point a
SCENARIOS
[
L]
move aperture -
across scan edge
to find maximum 2 m
no. of hits
R ER
Area Al Area A2
VERSION 1 (Discrete) VERSION 2 (Integral)

Figure 4. The two approaches to evaluating the maximum number of hits for a given
scan and receiver combination. Version 1 corresponds to the “discrete”
model and version 2 the “integral” model.
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Figure 5. Comparison of discrete and integral method of counting hits. Parameters used:
hscan, vscan = 2 mrad, hg, vg = 0.1 mrad, delay = 2 ms, aperture radius = 25 mm,
range = 51 m. The discontinuity in the “discrete” curve is due to two edge points
each contributing 21 hits moving out of the aperture.

3.3.2.3 Exposure time

The exposure time is the product of the number of horizontal lines falling within the
aperture and the linear scan time, subject to the limit of the total scan time. This
simple definition tends to overestimate the exposure time by up to one horizontal
scan time, but this is considered negligible, and preferable to underestimating when
the number of lines containing a hit is small.

3.3.2.4 Units

For all wavelengths greater than 300 nanometres, the tabulated MPE depends on the
exposure time. Below a threshold exposure time, which for most wavelengths is 10
seconds, the MPE is expressed in terms of energy density, so the MPE, modified
according to case a), b) or ¢) as in Section 3.2.2 must be compared with the energy
density of a single pulse. Above the threshold, the MPE is in power density, and is
converted to energy density by multiplying by the exposure time.
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3.3.2.5 Optical aids

In addition, where there is the possibility of optical aids such as binoculars being
used, the MPE is modified (decreased) by an optical gain factor. This factor is either
the ratio of the area of the objective lens to that of the eye or the square of the
magnification, the latter if the beam size is smaller than the objective.

3.3.2.6 Limiting aperture

The use of limiting apertures is defined in the Standard [1]. The idea is that if a beam
is smaller than a receiver, it is the total energy/power received that is important rather
than the energy/power density at the receiver input.

In the model this means that when the beam is smaller than a certain size, known as
the limiting aperture, the energy is assumed to be averaged over the entire limiting
aperture. Values for the limiting aperture, which depend on wavelength and exposure
time, are defined in the Standard [1].

In practice this is taken into account by modifying the MPE, by increasing it by the
square of the ratio of the beam and limiting aperture radii.

3.3.2.7 Skin exposure

Separate MPEs are defined for skin exposure as well as eye exposure. Additionally,
for some wavelengths and exposure times the MPE is reduced if the beam area
exceeds 0.1 m? Only lasers having an output power greater than 10 W are capable of
exceeding this limit, so if the laser is of lesser output this restriction need not be
considered.

NOHDs must be calculated for both ocular and skin exposure.

3.3.3 Running the model

The model is run by calling the MathCAD worksheet from an Excel Macro, which
allows a table of results to be generated. It can also be run be using the MathCAD
worksheet alone, and setting the input parameters within the worksheet. This
generates one value of each output (eg NOHDeye) each time the worksheet is
executed.

A typical data entry and output table and a listing of the Excel Macro is given in
Annex B, and listings of the two MathCAD worksheets are given in Annex C.

3.3.3.1 Using the Excel Macro
In order to use the Excel Macro, the following procedure should be followed:

e Open Excel
* Open file “NOHD of scanned systems.xls”

11
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Enter a table of input data in columns B to O, starting in row 16

Check that the path in cell W5 is correct for the MathCAD worksheet

Open MathCAD (Version 6+)

Open file “NOHD of scanned systems.mcd”

In Excel, position the cursor in cell W4

Right-click the mouse

Select “Run” from the menu

Select “Run” from the “Macro” window that opens (note: there are other ways of
running the macro)

The macro will now run, transferring input data from the table to the MathCAD
worksheet, and inserting the results in the output part of the table, row by row until it
has completed the last row, then stops. The results can then be used to generate plots
or be manipulated in other ways - but they must be copied to another Excel
worksheet first. Excel does not allow calculations or plots in a “macro” worksheet.

3.3.3.2 Divergence as an input

It may be desirable to input a range of divergences instead of a range of wavefront
radii. Because the model calculates divergence from wavefront radius, this has to be
done by first calculating the radii that correspond to the desired divergences, inserting
them in the table. The model provides divergence as an output, not an input.

A MathCAD worksheet has been created that calculates divergence from given
wavefront radius (and M-squared, wo and 1), and also has the capability of
generating a table of wavefront radius given a range of divergences.

The procedure is as follows:

e Open MathCAD (Version 6+)

* Open file “divergence vs wavefront radius.mcd”
Using the lower part of the sheet and the range variable “i”, set up the desired
range of divergences

e On executing the worksheet, the corresponding range of wavefront radii are
displayed.

Care is required however, as each divergence has two solutions in wavefront radius,
one positive and one negative (but of the same magnitude). These correspond to
divergent and convergent output beams from the scanner. It is important to select the
correct one for the application as this can affect the NOHD considerably.

If the “solve block” fails to find the radius for a given divergence, the solution can be
obtained manually using the upper part of the worksheet, varying Ro until the desired
divergence is obtained
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4. Example

This section contains an example calculation of the NOHDs for a scanning laser
rangefinder system under development in DSTO called the Imaging Laser Radar.

4.1 Input data
The following input data is used for the calculation:

e The wavelength is 1.54 um.

¢ The total average output power is 1.6 watts, made up of 0.16 mJ pulses at a prf of
10 kHz;

e The beam is round and Gaussian in profile with a 1/€? radius of 11 mm and an M?
value of 1.36;

¢ The scan pattern can be varied from 2 x 2 pixels to 10 x 10 degrees - it is restricted
to a square pattern to simplify analysis;

¢ The initial radius of curvature of the wavefront can be varied from 20 m diverging,
through +eo (collimated) to 10 m converging, corresponding to a range of far field
divergence of 0.1 to 1 mrad;

¢ The delay is 2 ms;

4.2 MPE evaluation

The MPE figures with which the exposures calculated in the above section must be
compared are dependent on the exposure time, which is denoted exptime(z). For the
eye, the MPE is

MPEeye = 10000 J.m2 (exptime(z) < 10 s)

MPEey. = 1000 W.m-? (exptime(z) 210 s)

For the skin, we have

MPEskin = 100 J.m2 (exptime(z) < 107 s)

MPEskin = 5600 . exptime(z)'/4 J.m? (exptime(z) < 10 s)

MPEgin = 1000 W.m2 (exptime(z) 210 s, beam area < 0.1 m?)
MPEin = 100 W.m2 (exptime(z) 210 s, beam area = 0.1 m?)

The power of the laser is such that this last skin limit cannot be reached.

4.3 Results

The model has been used to calculate the NOHD for the skin and for optically aided
viewing using 7 x 50 binoculars as a function of beam radius of curvature for a
variety of scan step sizes. The results are shown in Figures 6 and 7 below.

13
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Figure 6. NOHDe for 7 x50 binoculars as a function of beam radius of curvature, with

a delay of 2 ms.
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Figure 7. NOHD for skin as a function of scan angle, resolution 0.1and 1 mr, with a

delay of 2 ms.

14
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It can be seen that the most restrictive case is with a step size of 0.1 mrad, ie the finest
resolution scan. The NOHD for 7 x 50 binoculars is some 95 m for a radius of curvature
of 100 m. The skin hazard is small, with the NOHD extending to no more than 25 m in
the worst case when the beam is focused. Figure 8 below shows the NOHD for the
naked eye, which extends to 10.6 m when the beam is focused at 10 m, but falls below
2 m for all other radii of curvature that the ILR can produce. The fact that the eye
hazard is less than the skin hazard is due to the definitions of the respective MPEs in
the Standard [1].

12 1
Step size (mrad)

——0.1
——0.2
— =03

NOHD (m)

& & & & o o
v v v v v ad

-10 -18 -20 -24 -30 -60 -100 10000 20
Radlus of Curvature (m)

Figure 8. NOHD for the unaided eye.

If we now allow the radius of curvature to vary over the same range of magnitude, but
be of either sign, we see the importance of knowing the beam parameters in the near
field. Figure 9 shows NOHD as a function of divergence for beams which were initially
converging and diverging on leaving the scanner.

15
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Figure 9. NOHDe for 7 x50 binoculars as a function of far field beam divergence for
beams initially converging and initially diverging.

If the divergence was determined by a far-field measurement and the setting of the
beam expander was not known, a situation could arise where in the worst case the
NOHD is underestimated by almost a factor of 5.

4.4 Use in dynamic safety feature

The ILR system includes a dynamic safety feature that allows it to switch to a “safe
mode” of operation on detection of an object within the hazard zone for its current
settings.

It does this by monitoring the range returns on a shot-to-shot basis and comparing
them with a computed value for the NOHDe. Because the calculations are
computationally intensive, this requires a look up table of NOHDe values as a function
of step size and collimation telescope setting.

The model has been used to calculate the safe operating range for the ILR in the field,
over a range of step size and telescope settings, and a look up table has been generated
that gives the NOHDe for a wide but discrete range of scan/divergence conditions.
The ILR’s software will use interpolation to calculate the appropriate NOHDe for any
combination of beam radius of curvature (ROC) or scan step size that might be used in
the field. The look up table is given below:
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Table 1: NOHDe in metres for ILR

Step Size
ROC (mrad)
(m) 0.1 0.2 0.3 0.4 0.5 0.7 1
-10 20.6 19.5 17.7 16.6 15.9 14.9 12.5
-20 38.8 32.9 30.4 28.8 25.0 17.8 12.5
-40 63.5 55.1 41.6 31.2 25.0 6.8 4.3
-60 81.8 62.4 41.6 12.8 9.3 6.1 4.0
-100 95.1 28.7 15.3 10.7 8.3 5.7 3.9
-200 50.4 21.2 13.4 9.8 7.7 5.4 3.8
-500 39.6 19.2 12.6 9.4 7.5 5.3 3.7
10000 35.7 18.2 12.2 9.2 7.3 5.2 3.7
150 20.6 16 11.1 8.5 6.9 5.0 3.6
50 20.6 13.5 9.7 7.6 6.3 4.7 - 3.4
20 17.1 10.7 8.0 6.4 5.4 4.1 3.0

In the case where optical viewing aids can be eliminated from consideration the
appropriate look up table is that for the NOHD of the skin. The look up table for this
is given below.

Table 2: NOHDskin in metres for ILR

Step Size
ROC (mrad)
(m) 0.1 0.2 0.3 0.4 0.5 0.7 1
-10 11.5 11.3 11.2 11.2 11.1 11.1 11.0
--18 19.8 19.4 19.2 19.1 19.0 18.8 18.7
-20 21.6 21.2 21.0 20.8 20.6 20.3 0.2
-24 24.9 0.7 0.5 0.4 0.3 0.2 0.2
-30 1.3 0.7 0.5 0.4 0.3 0.2 0.2
-60 1.3 0.7 0.5 0.4 0.3 0.2 0.2
-100 1.3 0.7 0.5 0.4 0.3 0.2 0.2
10000 1.3 0.7 0.5 0.4 0.3 0.2 0.2
20 1.3 0.7 0.5 0.4 0.3 0.2 0.2
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5. Conclusions

A model has been developed that allows determination of the hazard distances for
scanning repetitively pulsed laser systems. This is expected to be of increasing
importance as systems based on such devices find more application and are fielded
more widely. Systems with wavelengths between 1.4 um and 1 mm can be evaluated.

The model has been used to calculate the envelope of NOHDs that apply to the
Imaging Laser Radar demonstrator, currently being developed in DSTO. Knowledge

of these values will be crucial to the adoption of appropriate safety procedures
during trials of the system.
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Annex A: Flowchart
Receiver Scan parameters Beam Laser
parameters (angular) parameters parameters

Calculate spatial

scan parameters as
fn of range

:

Calculate no. of hits
as fn of range

4

/ No. of hits(z/ / Eggqo:(t;;e /
A 4

B tion:
v Calculate Calo beam radius a¢
multiple-pulse MPE fn. of range

Modify MPE to take
account of binos,
limiting apertures

(AS2211)

I__*

Find greatest range where
energy density(z) > MPE(z)

single-pulse
energy

density as fn

of range

NOHD for
eye
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Macro

send

L

divergence

No_of_points

exptime

NOHDopt

NOHDskin

DDE Macro

=INITIATE("MCAD","d:\ alasdair\ winmcad\ safety\ NOHD of scanned systems.mcd")

=SELECT(INDEX(!$B$16,1,1))
=POKE(send,"hscan",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"vscan", ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"resh", ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"resv",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"del",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"Power",ACTIVE.CELL())
=SELECT("R[]JC[1]")
=POKE(send,"PRF",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"lambda", ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"FWHM", ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"Msq",ACTIVE.CELL()
=SELECT("R[IC[1]")
=POKE(send,"w_out",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"R_out", ACTIVE.CELL()
=SELECT("R[JC[1]")
=POKE(send,"BINO",ACTIVE.CELL())
=SELECT("R[]C[1]")
=POKE(send,"discrete", ACTIVE.CELL())
=REQUEST(send,"diverg")
=SELECT("R[IC[1]")
=FORMULA(divergence)

=REQUEST (send,"Npts")
=SELECT("R[]JC[1]")
=FORMULA(No_of_points)
=REQUEST(send,"TEXP")
=SELECT("R[IC[1]")

=FORMULA (exptime)
=REQUEST(send,"NOHDopt")
=SELECT("R[]C[1]")
=FORMULA(NOHDopt)

=REQUEST (send,"NOHDskin")
=SELECT("R[]C[1]")
=FORMULA(NOHDskin)
=SELECT("R[1]C[-18]")
=[F(CELL("type")="b",GOTO(Q))
=GOTO(L)

=TERMINATE(send)

=RETURN()



Annex C: MathCAD worksheets
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Worksheet to calculate output wavefront radius as a function of M-squared and divergence

All dims in metres, angles in mrad

lambda := 1.54 A := lambda-10°% w_out:= 001  wq:i= w_out Initial parameters

Msqaured := 1.5 Msq := Msqaured R_out:=-100 R:=R_ out

-0.5
T m 1 Expression for 1/e2 radius

A-Msq 1 i -AMsg -1 . as a function of distance
- ¥

Wb(Ro,qu,Z) =
R_O TE'WO2

div(R o, Msq) := (w (R g, Msq, 10000) - w (R g, Msq, 9000)) -2

div (R 0 qu) =0.248 divergence for given radius and Msquared
MINdiv := div(lOs, qu> minimum possible divergence
Rp:=-200 Solve block to find divergence for given R, Msquared
Given
[ x 1 -05 n . -0.5
div=j | - -Im| - i .Im n 2
A-Msq e - A-Msgq i A -
11 -AMsq + 10000 1 _1-AMsq + 9000
Ro n-w 02 . Ro LA

R(Msq, div) := Find (R )
Range may need to be adjusted to allow for minimum possible divergence of

i=2.10 MINdiv = 0.147 mrad

R(15,i-0.1)

-147.5
% 48368 Results for R with Msquared = 1.5, divergence from 0.2 to 1 mrad

53.765
41.851
34.382
29.224
25.433
22.525

20.22
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Calculation of Hazard Distances for Scanning, Repetitively Pulsed Laser Systems

Alasdair McInnes and James Richards

AUSTRALIA
Number of Copies
DEFENCE ORGANISATION
Task sponsor: DDOHS 1
S&T Program
Chief Defence Scientist ]
FAS Science Policy t shared copy 1
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